Simultaneous Perturbation Newton Algorithms for Simulation Optimization

نویسندگان

  • Shalabh Bhatnagar
  • Prashanth L. A.
چکیده

We present a new Hessian estimator based on the simultaneous perturbation procedure, that requires three system simulations regardless of the parameter dimension. We then present two Newton-based simulation optimization algorithms that incorporate this Hessian estimator. The two algorithms differ primarily in the manner in which the Hessian estimate is used. Both our algorithms do not compute the inverse Hessian explicitly, thereby saving on computational effort. While our first algorithm directly obtains the product of the inverse Hessian with the gradient of the objective, our second algorithm makes use of the Sherman–Morrison matrix inversion lemma to recursively estimate the inverse Hessian. We provide proofs of convergence for both our algorithms. Next, we consider an interesting application of our algorithms on a problem of road traffic control. Our algorithms are seen to exhibit better performance than two Newton algorithms from a recent prior work.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive system optimization using (simultaneous) random directions stochastic approximation

We present the first adaptive random directions Newton algorithm under i.i.d., symmetric, uniformly distributed perturbations for a general problem of optimization under noisy observations. We also present a simple gradient search scheme under the aforementioned perturbation random variates. Our Newton algorithm requires generating N perturbation variates and three simulations at each iteration...

متن کامل

Randomized Difference Two-Timescale Simultaneous Perturbation Stochastic Approximation Algorithms for Simulation Optimization of Hidden Markov Models

We propose two finite difference two-timescale simultaneous perturbation stochastic approximation (SPSA) algorithms for simulation optimization of hidden Markov models. Stability and convergence of both the algorithms is proved. Numerical experiments on a queueing model with high dimensional parameter vectors demonstrate orders of magnitude faster convergence using these algorithms over related...

متن کامل

A Hybrid Algorithm for Global Optimization Problems

We propose a hybrid algorithm for solving global optimization problems that is based on the coupling of the Simultaneous Perturbation Stochastic Approximation (SPSA) and Newton-Krylov Interior-Point (NKIP) methods via a surrogate model. There exist verified algorithms for finding approximate global solutions, but our technique will further guarantee that such solutions satisfy physical bounds o...

متن کامل

A Stochastic Perturbation Algorithm for Inventory Optimization in Supply Chains

In recent years, simulation optimization has attracted a great deal of attention because simulation can model the real systems in fidelity and capture complex dynamics. Among numerous simulation optimization algorithms, Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm is an attractive approach because of its simplicity and efficiency. Although SPSA has been applied in several...

متن کامل

EFFICIENT SIMULATION FOR OPTIMIZATION OF TOPOLOGY, SHAPE AND SIZE OF MODULAR TRUSS STRUCTURES

The prevalent strategy in the topology optimization phase is to select a subset of members existing in an excessively connected truss, called Ground Structure, such that the overall weight or cost is minimized. Although finding a good topology significantly reduces the overall cost, excessive growth of the size of topology space combined with existence of varied types of design variables challe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Optimization Theory and Applications

دوره 164  شماره 

صفحات  -

تاریخ انتشار 2015